
758 

Acta Cryst. (1977). A33, 758-767 

P r o b l e m s  in the  N u m e r i c a l  C a l c u l a t i o n  o f  the  C o n t r a s t  o f  D e f e c t s  in X - r a y  

T r a v e r s e  T o p o g r a p h s  

By Y. EPELBOIN 

Laboratoire de Min&alogie-Cristallographie, associ~ au CNRS, Universit~ P. & M. Curie, 
4 place Jussieu, 75230 Paris CEDEX 05, France 

(Received 24 January 1977; accepted 23 March 1977) 

The simulation of section topographs of distorted crystals may be performed with good accuracy; it is 
now possible to use it as a tool to determine the quantitative parameters of various defects. The simula- 
tion of traverse topographs is a more complicated problem: it needs a tremendous amount of computa- 
tion time, but the main difficulty arises from the numerical method itself. Reasons and a demonstration, 
with simulations of the contrast of a dislocation, are given why the only way to compute the traverse 
topograph is by the addition of the intensities due to an incident spherical wave. Nevertheless, the ac- 
curacy of the result remains poor. 

Introduction 

The calculation of the contrast of a dislocation was 
first performed by Taupin (1964, 1967) in the case of 
an incident plane wave with an infinite width. Then, 
Authier, Malgrange & Tournarie (1968) calculated the 
repartition of the intensity of the X-rays when the 
crystal is curved by a thermal gradient. Authier & 
Balibar (1967) simulated, for the first time, a section 
topograph in the case of an isotropic crystal con- 
taining a dislocation. Since then, several authors have 
developed routines to simulate section topographs: 
Chukovskii (1974), Epelboin (1974), Takagi, Ishida, 
Komaki & Saito (1974), in the Laue case and Bedynska 
(1973) in the Bragg case. Ishida, Miyamoto & Kohra 
(1976) have simulated the image of a dislocation in 
the case of an incident plane wave, and this is in 
agreement with a multicrystal experiment. 

Simulation of section topographs may be now used 
as a tool by both theoreticians and experimentalists, 
but as the latter are more interested in traverse topo- 
graphs which allow one to examine, in one experi- 
ment, a large crystal volume, it would be of great 
interest to simulate these experiments. 

Takagi (1969) has shown that the integrated in- 
tensity along the exit surface of a crystal may be cal- 
culated from the knowledge of the repartition of in- 
tensity, along this surface, due to any kind of incident 
wave on the crystal. It must be noticed that, in the 
present case, integrated intensity refers to the intensity 
falling at a given point P on the exit surface of the 
crystal for a given reflexion. 

If we assume, for simplicity, that the entrance sur- 
face of the crystal is a plane, the amplitudes of the two 
Fourier components of the crystal wave and of the 
incident wave may be written as: 

Da(re) exp ( - i2nK. re) = Do(re) exp ( - i2rcko, re) 

0=Dh(re) exp (--i2~kh.re) (1) 
where K is the wave vector of the incident wave of 

amplitude Da(re) ; re indicates a point on the entrance 
surface of the crystal (Fig. 1). If we introduce a coor- 
dinate ~ along this surface, (1) may be written as: 

Do(¢)=Da(~) exp ( -  i27~T~) (2) 

where T = (K - ko). re. 
The integrated intensity at a point P, in the crystal, 

is obtained by the integration of Dh(P)D~,(P). 
The amplitude of the reflected wave Dh(P) depends 

on the boundary conditions expressed in (1), which 
are characterized by the phase factor T. 

The integrated intensity is given by: 

f+ ;f Xh(P)---- dT 
- oo  B A  

× Kyo exp [ - i27rT(~-~ ' ) ]d~d~ ' ,  (3) 

7o =cos (n, So) (Fig. 1). 
Uh(P,~) is the amplitude of a reflected wave cor- 

responding to an incident wave which would be a 
point source located at the coordinate ~ on the en- 
trance surface. 

We may change the order of integration, and as: 

f +oo exp [ - i 2nT(~ -~ ' ) ]dT=6(~ -~ ' )  
- - O 0  

the integral (3) may be written as 

th(e)= J['.A IUh(P'~)I21Da(¢)I2Ky°d(" (4) 

A B ,,q 

P 

Fig. 1. Notations used in the Takagi-Taupin equations. 
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In (3) and (4) we have neglected a constant factor 
which should appear in front of the integrals. 

The integral (4) means that, at the point P on the 
exit surface, the integrated intensity Ih is given by the 
superposition of the intensities of elementary dif- 
fracted waves along the entrance surface. 

This is a very important point because it means 
that the intensity, in a traverse topograph, is deter- 
mined by the total intensity arriving at each point P 
on the exit surface and is completely independent of 
the intensity distribution or the shape of the wave 
front incident on the crystal. 

If we consider the two practical cases where the 
incident wave is a plane wave or a spherical wave, 
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Fig. 2. The two ways of calculating the intensity along ab, on a 
traverse topograph. (a) Addition of incident plane waves with 
departures AO from the Bragg angle. (b) Simulation of the real 
experiment with a translation 00'  of the source. 

Authier & Simon (1968) have shown that the cor- 
responding amplitudes of the waves, inside the crystal, 
are linked by a Fourier transform. The reciprocal 
variables of this transformation are the position of the 
point P, on the exit surface, where the intensity Ih is 
calculated in the case of an incident spherical wave 
and the phase T in the case of an incident plane wave. 
We will show that this phase is related to the departure 
from the Bragg angle of the incident wave. 

This means that the integral (4) results from the 
application of Parseval's theorem and that the inte- 
grated intensity may be calculated in two different 
ways with both reciprocal variables used as param- 
eters of the integration: (a) by adding the intensities 
due to incident plane waves with different phases, i.e. 
with variable departures from the Bragg angle (Fig. 
2a). (b) by simulating the real procedure of a traverse 
topograph, i.e. to move the position of a spherical 
source on the entrance surface and to add the inten- 
sities of each calculation (Fig. 2b). 

From the theoretical point of view the methods 
are equivalent, but for a simulation we must use that 
which corresponds to the fastest calculation; since 
the integrals must be replaced by numerical algorithms 
in the computation we must discuss the approxima- 
tions which will be introduced. Then we will be able 
to choose the best method to calculate the contrast 
of a defect in a traverse topograph. 

The last part of this paper presents the result of the 
calculation by both methods and we shall explain why 
it is not possible, in reality, to simulate traverse topo- 
graphs with good accuracy. 
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Fig. 3. Conditions of continuity along the entrance surface. For 
simplicity, branch 1 only of the hyperbola has been drawn. 

I. Numerical methods of integrating the 
Takagi-Taupin equations 

Let us recall the well-known equations (Takagi, 1962; 
Taupin, 1964) which give the amplitudes of both re- 
fracted and reflected waves Do and Db 

0 
cgs o 

O 

CgSh 

- -  Do(r) = - ircKzriDh(r) 

- -  Du(r) = - i~KxaDo(r) + 2bz{Kflh 

~S h [h. u(r)]}Dh(r) (5) 

where ~h and Xlc are the Fourier coefficients of the 
electric susceptibility. As is usual in simulation rou- 
tines, we will neglect polarization effects, thus C = 1. 
u(r) is the local deformation of the crystal at the point 
r; h is the reciprocal vector of the reflexion, flh = 
( ] k h ] -  Ikol)/lKI; its value will be chosen to simplify the 
relations of continuity between the vacuum and the 
entrance surface of the crystal, which correspond to 
(1). The extremities of both vectors kh and ko are 
matched through the value of flh and its choice must 
be made so that the amplitudes Do(r) and Dh(r) are 
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slowly varying functions of the position inside the 
crystal. If we choose: 

Ikol = k = K(1 + Zo/2), 

where k is the mean wave number in the crystal, any 
slight variation of ko may be written in the expression 
of the amplitudes. All explanations may be found in 
Takagi (1975a). The extremity of ko will thus lie on a 
sphere of radius K(1 +)~o/2) which is, in a plane of 
incidence, the asymptote to the dispersion hyperbola. 
In the integration routine we will choose this ex- 
tremity at the point P1 (Fig. 3) which is the intersec- 
tion of the asymptote with the normal to the entrance 
surface drawn from the characteristic point M in the 
vacuum. 

Let us consider now the phase factor which ap- 
pears in (1); its value will be equal to zero and this 
will simplify in the integration routine the continuity 
equations which may now be written as 

Do(~)=Da(~) . 

A simple calculation shows that: 

flh = - ~/]/(XhZ~)]//(Th/V o) (7) 

where ~/is the usual deviation parameter which gives 
the value of the departure from the Bragg angle; 

7o =cos (n, So) 
~b = cos (n, sh) (Fig. 1). 

We will now examine the approximations which ap- 
pear in the numerical method of integration of (5). 

We will only recall the principles which have been 
explained in other papers (Authier, Malgrange, 
Tournarie, 1968; Epelboin, 1975a, b). 

The crystal is divided in elementary slabs (Fig. 4) 
and the integration is performed along a network 
parallel to the refracted and reflected directions So, 
sh. Let p and q be the elementary steps along both 
directions. 

p = ~oELEM 
q=yhELEM 

where ELEM is the thickness of a slab. 
Equations (5) may be written: 

p ~ Do 2ADh 
V~o 

q ~ Dh =2BDo +2WDh 

i ELEM 

TRANSV 

Fig. 4. Principles of the integration of the Takagi-Taupin equations, 
step by step. 

where 

A = -½iprrKx~ 

B = --½iqzrKzh 

{K 0 [h u(r)]} (8) W = iz~q f lh-  -~h " " 

Only W is a function of the position inside the crystal. 

II. Approximations of the method of  integration 

II. 1. First approximation: "half-step derivative" 
We use the so-called method of the 'half-step deriva- 

tive' to evaluate the values of ODo/aSo and ODh/OSh. 
If we write the following developments of a function 
f(x).  

f (x)= f ( x  + p /2 ) -  P/2 ~x f ( x  + p/2) 

0 2 0 3 
-t- p2/8 - ~  f (x + p/E)-- pa/48 - ~  f (x + p/2) 

0 
f ( x  + p)= f ( x  + p/2)+ P/2 -~  f ( x  + p/2) 

0 2 9 3 
+ p2/8 ~ f ( x  + p/2)+ p3/48 ~-~ f ( x  + p/2) 

we may write that 
0 

p -~  f ( x  + p/E)= f ( x  + p ) -  f (x )  

with an error of third order only: less than 
9a 

p3/24 ~ f (x + p/2) . 

The Takagi-Taupin equations may thus be written 
in the form: 

Do(so, sh) - Do(so - P, sh) = 2ADb(so - p/2, sh) 

Dh(so, sh) -- Dh(so, sh -- q) = 2BDo(so, sh -- q/2) 

+ 2 W(so, s h -  q/2)Db(so, sh-- q/2). (9) 

II.2. Second approximation 
As Do and Dh vary slowly with the position inside 

the crystal, we may write them at position so-p~2, 
sh or So, sh -q /2  with the following approximation: 

2 f ( x  + p/2) ~ - f ( x ) +  f ( x  + p/2). 

Now the error will be less than 

0 2 
p2/4~_.2 f ( x  + p/2) u x -  

which is of second order only. So, we may write the 
following system which will be used in the integration 
routine: 
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ID --Do(So--p, sh)-] 
o(So, Sh)-- • , , V C 2 A C 2 A B A C I - ]  Dh(So--p, Sh)[ 

AB c, J  o(so, s .-q) l 
[_Oh(S0, Sh)_ Dh(S0, Sh -- q)d 

(10) 
where d = 1 - W - A B ,  C1 = 1 + W,  C2 = 1 - W.  

It must be noticed that Taupin (1964, 1967) uses a 
Runge-Kutta method to integrate the equations. This 
method is more precise but needs more computer 
time: we will show that, in a simulation, this accuracy 
is lost for reasons which will be explained in the 
following paragraphs. 

II.3. Numer ica l  approximat ions  

Equations (9) show clearly that the values of the 
amplitudes Do and Dh at a given point A (Fig. 4) 
depend only on the values of the amplitudes at points 
B and C. If the thickness of the slab, ELF.M, is small 
enough to take into account the slow variations of 
the amplitudes, we shall finally obtain the values of 
the intensity on the exit surface through the iteration 
which is given in equations (10). But the numerical 
values of the variables may be written in the computer 
with a limited number of digits, and as the numerical 
approximation in each elementary operation of the 
routine is of the order of the last bit, at least, the error 
will rapidly increase with the number of elementary 
slabs. For example, suppose the crystal is divided into 
400 elementary slabs; to use a 32-bit word (which is 
the case with IBM computers) means that the final 
value of the intensity will be known with an error on 
the fourth or fifth digit. This is not very important in 
the simulation of a section topograph. 

Of course all the different approximations decrease 
the accuracy of the calculation, but we must remember 
that the worst part of the simulation is the final stage: 
the representation of a photographic picture by means 
of a lineprinter; the error made there is much larger 
than any due to the approximations we have already 
discussed. In any case, it does not seem that the ap- 
proximations will strongly affect a simulation. It is 
of more importance in the case of a traverse topograph: 
we shall have to add the calculated values of the 
intensities from different incident waves arriving at the 
same point on the exit surface. 

Thus, the numerical approximation from the com- 
putation will also be proportional to the number of 
added waves and may become of great importance. 
Of course, we may increase the precision of the cal- 
culation by using longer words in the computer but 
this means more core memory and a longer computing 
time. On the other hand, we may save time by using 
a step of integration which varies with the importance 
of the local deformation inside the crystal. This has 
been done by Taupin (1967) and by Takagi et al. 
(1974) for the case of a crystal containing a disloca- 
tion. The interest of such a method depends upon the 
computer and has been discussed in a preceding paper 
(F,pelboin, 1975b). 

But we will now see that the main limitation in the 
simulation of a traverse topograph comes from the 
errors which appear in the boundary conditions. 

HI. Boundary conditions 

As has already been explained, we have two practical 
choices for the calculation of the integrated intensity 
in the case of a traverse topograph: to add the in- 
tensities either for an incident plane wave or for an 
incident spherical wave; we will therefore examine the 
boundary conditions in both cases. 

III.1. Spherical incident wave 

A spherical incident wave may be simulated, to a 
good approximation, by the light from one point 
source on the entrance surface of the crystal. The value 
of flh has no importance and may be taken equal to 
zero. This is a good approximation for an incident 
spherical wave, as has been explained by Kato (1976): 
if we calculate the intensity distribution on the exit 
surface of the crystal, it may be shown that the result 
is the well-known Bessel function (Kato, 1961) when 
the elementary step of integration is decreased to zero. 
But troubles stem from this good approximation itself: 
the Bessel function Jo varies rapidly near the So and 
Sh directions. 

If we plot the repartition of intensity in a perfect 
crystal along a line parallel to the entrance surface 
(Fig. 5) the greatest part of the intensity appears near 
the edges of the Borrmann triangle, before the first 
zero of the Jo Bessel function. Thus, if the vertical 
step of integration ELEM is not small enough, the 
corresponding horizontal step TRANSV (Fig. 4) may 
be too large to take into account the rapid variations 
of Jo. Table 1, due to Takagi (1975b) gives the value 
H (Fig. 5) of the first zero of Jo(H) as a function of the 
thickness Z of the crystal. 

For example, if we simulate a section topograph in 
a 800/~m thick silicon crystal, using the 220 refiexion 
with Mo K~ radiation (Epelboin, 1974), Z = 20.3 A/rc 
where A is the extinction distance; the horizontal step 

Iohl, 

D2 %-- 

Fig. 5. Amplitude of the reflected wave in a perfect crystal, with low 
absorption, along a line parallel to the surface. 
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Table 1. First zero of the Jo Bessel function as a 
function of Z, thickness of the crystal, in units of A/~ 

Z 10 20 50 
H 0.15 0.07 0.03 

is TRANSV = 0.066 A/rt. This means that in the simula- 
tion a great part of the intensity will be missing along 
the So direction, because the horizontal step is too 
large. This will be important only for the kinematical 
image of a dislocation when this defect crosses the 
refracted beam, because the greatest part of the in- 
tensity lies along the So direction inside the crystal but 
will only slightly affect the other parts of the image. 
This explains why the kinematical image is never good 
in a simulation. 

Consider now the case of a traverse topograph: this 
error will certainly be more important than all the 
approximations which have been made in the inte- 
gration. It is well known (Authier, 1961) that in low- 
absorbing crystals the image of a defect in a traverse 
topograph is mainly due to the kinematical image; so 
we may assume before any calculation that the values 
of the integrated intensity obtained by adding spherical 
incident waves will certainly be lower than in the real 
experiment. 

111.2. Incident plane wave 
A good approximation for the simulation of an 

incident plane wave, is the light from many point 
sources on the entrance surface of the crystal (Authier, 
Malgrange & Tournarie, 1968). 

In this case the value of fib will characterize the 
departure from the Bragg angle of the incident wave 
[equation (7)-]. We must be careful about the horizontal 
step of integration, TRANSV. Table 2 gives the varia- 
tion of the phase of the incident plane wave, given in 
(2), as a function of r/ along the entrance surface 
(Fig. 1). 

Table 2. Variation of the phase of an incident plane 
wave along the entrance surface in units of 2rc 

0.9 2.7 9 89.8 A/rc 
t/ 

1 0"77 2"31 7.71 77.14 
20 15"42 46"28 154"29 1542"89 

For example, let us consider the same experimental 
conditions as in the discussion about the incident 
spherical wave; to simulate a plane wave with a limited 
width of ~ 30 #m corresponds to about 40 points of 
light along the entrance surface. Expressed in terms of 
A this width is equal to 2.7A/rc. For r/= 1 this means 
that the phase varies along the wave front on the en- 
trance surface from zero to 2"31 x 2ft. 40 points are 
enough to take into account the oscillations of this 
phase, but will certainly be wrong for high values of 
r/: in this case the phase varies from zero to 46-28 × 2rr 
and we should decrease the integration step to match 

the boundary conditions along the entrance surface 
correctly. But, as we have already explained in § I, this 
problem does not appear in our routine: the extremi- 
ties of the wave vectors k0 and kh have been chosen 
on the normal to the entrance surface of the crystal, 
at point Ps (Fig. 1) and the phase of the incident wave, 
given in (2), is thus always equal to zero along the 
entrance surface. This does not mean that the length 
of the integration step has no importance. To evaluate 
its influence let us write the conservation of energy in 
a perfect non-absorbing crystal: 

J = Z ?oDoDo + Z ?hDhD'h. 

The summation must be done at each point of the 
network of integration along a line DID2 (Fig. 4) 
parallel to the slab of thickness ELEM. It may be 
shown (Authier, Malgrange & Tournarie, 1968) that 
the total energy will be: 

J =  1 + 2c~IABWZl 

where ~ is the energy flow in the reflected direction 
and 1-0~ the energy flow in the refracted direction. 
The intensity of the incident wave is normalized and 
equal to unity. In the case of a symmetric reflexion, 
and in a perfect crystal: 

W = i7~qKflh, 

thus 

I WI = rt(ELEM/cos O)Kl/(ZhZ~)lq [ . 

Assuming that the energy is of the same order in both 
diffracted and reflected directions, the error is of the 
order of IABWZl . Thus, for the same simulation as 
before, the error is of the order of 10-5 r/2. This means 
that the accuracy of the simulation will decrease very 
rapidly when r/increases. 

By a good choice of the extremities of the wave 
vectors ko and kh we have overcome the problem of 
the sampling of the phase of a plane wave along the 
entrance surface of the crystal, but a difficulty then 
arises in the conservation of the energy flow. This 
means that the simulation of a traverse topograph by 
addition of the intensities of incident plane waves will 
suffer an error directly proportional to the number of 
added waves. Moreover, the errors will become more 
important as the departure from the Bragg angle be- 
comes more important and thus the convergence of 
the integral (3) may be lost, or we may obtain oscillating 
solutions for the integrated intensity along the exit 
surface of the crystal. 

IV. Results of the simulation 

We have calculated the contrast of a dislocation in a 
silicon crystal 226 /~m thick. The dislocation lies 
parallel to the surface of the crystal; its Burgers vector 
is ½[-101-] and its depth, inside the crystal, is 200/lm. 
The reflexion vector is 220 with Mo K~ radiation. It 
is a symmetric reflexion since the normal to the en- 
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trance surface is [111] (Fig. 6). The linear photo- 
electric absorption is g = 1-42 mm-1.  The integration 
was performed through 113 elementary slabs of thick- 
ness ELEM = 2 #m. 

The contrast of the dislocation on a traverse topo- 
graph has been calculated by adding the intensities 
due to incident plane or spherical waves. Both methods 
should be equivalent but the aim was to obtain a good 
convergence of integral (3) by addition of a few plane 
waves only and thus to obtain the contrast of the 
defect with an acceptable accuracy in a reasonable 
time. We will explain that the reality is quite different! 

IV. 1. Integration by addition of incident plane waves 
Each added plane wave was 580 #m wide on the 

entrance surface AB (Fig. 2a) which corresponds to 
a usable width ab of 496 #m on the exit surface. We 
have added up to 121 different plane waves with de- 
partures from the Bragg angle ranging from 
- 0 . 6  x 10 .4  to 0.6 x 10 .4  rad with a regular angular 
step of 10-6 rad. The corresponding limits in term of 
1,/are r/~_ _+ 11. 

The first question is to know how large the limits 
of integration should be in order to obtain good ac- 
curacy in the calculation of integral (3). Let us assume 
for simplicity that in a perfect crystal (taking an average 
over the Pendell6sung oscillations) the intensity of the 
reflected beam is proportional to 1/(1 +r/2) (Authier, 
1961). Thus the integrated intensity Ih is proportional 
to the integral: 

Ih "-- [1/(1 + r/2)]dr/= rc. 
- - O 0  

The accuracy of the calculated integral may thus 
be estimated to be of the order of: 

1 f"max [1/( 1 +r/2)]dr / 

,j T/mi n 
where r/min and r/max are the limiting values of the 
departure from the Bragg angle. Table 3 gives the ac- 
curacy of the integration for different values of the 
limits of integration; in each case r/mi.=--r/max. It 
seems that the accuracy is good enough when II/I = 11 
and we did not try to take greater values for the limits 
of the integral. 

The second problem is to choose the magnitude of 
the angular step of integration, i.e. the variation of the 
departure from the Bragg angle from one incident 

i / / ~  ',2 [,o~] 

, ~ [,7,1 
Fig. 6. Geometry of the dislocation in the simulation. ! indicates 

the direction of the line. 

Table 3. Estimation of the accuracy of integral (3) 
with limits equal to + Ir/I 

1,71 2 5 9 11 15 20 30 
Accuracy % 29"5 12"6 7 5"7 4-2 3-2 2"1 

kI h 
arbitrary units 

.5urn /'l~ ~ ^ 

/i 
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Fig. 7. Integrated intensity along the exit surface of the crystal from 
a to b (Fig. 2a). Limits of integration AO= +0.45 x 10 -4 rad. 
(1) Angular step of integration gi(A0)= 10 .6 rad. (2) Step equal 
to 2 x 10 -6 rad except between -0"3 x 10 -4 rad and 0-3 x 10 -4 
rad where it is equal to 10 .6  rad. (3) Same as curve 2 except 
between - 0 - 1 5 x  10 -4 and 0.15x 10 -4 rad where the step is 
equal to 10 -6 rad. The arrow denotes the projection of the 
dislocation on the exit surface of the crystal. 

plane wave to the next. On one hand, it is advisable 
to choose the smallest angular step of integration, but 
this means that for given limits of integration a greater 
number of waves should be added and that the ac- 
curacy of the integral will rapidly decrease, as has been 
explained in § II.3; we must also take into account 
the time of computation which is directly proportional 
to the number of added waves. On the other hand, too 
large an angular step means a loss of accuracy in the 
integral. 

Let us first check the value of the angular step of 
integration. Fig. 7 represents the results of the com- 
putation for AO varying from -0 .45  x 10 .4  rad to 
0.45x 10 -4 rad. (r/~_ _+8.2). Curve 1 corresponds to 
the addition of 91 waves with an angular step of 10 .6  
rad. Curves 2 and 3 correspond to the same calcula- 
tion but the step has been increased for the greater 
values of the departure from the Bragg angle. In both 
curves the angular step remains the same as before 
for the low values of departure from the Bragg angle, 
but has been doubled for the highest values. 

The three curves of this figure are quite different. 
Clearly, the calculation is not stable and we must 
choose as small as possible an integration step. This 
is confirmed in Fig. 8, where the limits of integration 
are larger (AO= ~0.6 x 10 -4 rad and where we have 
increased the step of integration for the smaller values 
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of this step. We have also tried to decrease the angular 
step of integration from 10 -6 rad to 0.5 x 10 -6 rad. 
This is presented in Fig. 9. The first peak on the left 
is an artefact due to the small values of the limits of 
the integral but the two curves are very similar. This 
suggests that an angular step of 10 -6 rad is small 
enough to obtain a good convergence. 

Let us now check the importance of the limits of 
integration. Curves 1 in Figs. 7 and 8 are quite dif- 
ferent: a peak on the right of the curve appears 
when the limits of the integral are increased; this may 
be explained as follows. The kinematical image of a 
defect is due to X-rays which propagate along the re- 

T 
Ih 

arbitrary units 

7.S.._._~m f 
f ~  .4", 

/#t l  !1! 
/ Ill III 

l t'ii /,ill l tl 
, liifliill;I 

I illlsli!a y " 
\. i ;/ i l " l l l { i  
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Fig. 8. Integrated intensity as in Fig. 7. Limits of integration -T- 0.6 x 
10-4 rad. (1) Angular step 10-6 rad. (2) Same angular step except 
between -T-0.15 x 10-a rad, step equal to 2 x 10-° rad .  (3) Angular 
step equal to 2 x 10 -6 rad between Yr0"45 x 10 -4 rad. 
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Fig. 9. Integrated intensity as in Fig. 7. Limits of integration -T-0.15 x 
10 -4 rad. (1) Angular step 10 -6 rad. (2) Angular step 0.5 x 10 -6 
rad. 
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Fig. 10. Integrated intensity as in Fig. 7. Step of integration 10 -6 
rad. Limits of the integral: (1) +0.4 x 10-'~ rad, (2) +0.5 x 10 -4 
rad, (3) +0"55 x 10 -4 rad. 

fracted reflexion and which are quite far from the exact 
Bragg position; the same contribution appears from 
incident waves with a large departure from the Bragg 
angle. This peak on the right is thus due to the kine- 
matical image and its height will increase when the 
limits of integration are larger: it is not yet visible on 
curve 1 of Fig. 7 but appears clearly on curve 1 of 
Fig. 8. This is more apparent on the three curves of 
Fig. 10 where the step of integration is fixed and where 
the limits of the integral are enlarged from one curve 
to another. 

Another characteristic phenomenon is the disap- 
pearance of a peak on the left of the curves when the 
limits of the integral are enlarged: to add more and 
more waves decreases the height of this peak. This 
may be understood by the simulation of the paths of 
the reflected wave fields inside the crystal. Fig. 1 l(b) 
shows the repartition of the intensity in a plane of 
incidence for an edge dislocation perpendicular to this 
plane, when the incident wave is a plane wave. The 
departure from the Bragg angle is null, thus r/=0. 
We notice the presence of two important directions of 
propagation of the wave fields below the defect. The 
beam on the left corresponds to the peak on the left of 
the curves in the limiting case when we add only one 
wave. 

Consider now Fig. 1 l(a) where the incident wave is 
a spherical wave. We do not notice any direction of 
propagation on the left side of the picture, below the 
defect. This corresponds to the limiting case when we 
add an infinite number of plane waves. The beam on 
the left side of the figure disappears when passing from 
the plane wave to the spherical wave. This suggests 
that the peak which disappears in the curves presented 
in this paper when the limits of the integral are in- 
creased, corresponds to wave fields with a small de- 
parture from the Bragg angle and should disappear 
when the limits of the integral are large enough, as 
in the case of the Fig. 8, curve 1. 
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We may conclude that (1) the integration is very 
sensitive to the value of the limits and that we must 
take them as large as possible. This may be explained 
by the appearance of the kinematical image of the 
defect and by a greater accuracy of the calculation 
(see Table 3). But the sampling of the sources along 
the entrance surface is very critical for large departures 
from the Bragg angle, as explained in § 111.2, and the 
calculation may be erroneous for large departures. 
Thus we must optimize both conditions. (2) The in- 
tegration step must be as small as possible and it 
would be interesting to decrease it more than we have 
done. But then the approximations of the numerical 
calculation may not longer be justifiable (see § 11.3). 
A simple calculation shows that in the calculated pro- 
file of Fig. 8, curve 1 the error is of the order of the 
third digit, using simple precision with a 32-bit word. 
This difficulty may be overridden but requires im- 
portant  changes in the routine, the use of a large core 
memory and more computer time. It does not present 
any interest as will be explained in § V. 

- - - -  " 7 . - ' __  

~ _ . - .  ~ -.~:-:- . ~  

(a) (b) 
Fig. 11. Simulation of the paths of the reflected wave fields for an 

edge dislocation, in a silicon crystal 800 #m thick. Reflexion 220 
Mo Ke (after Epelboin, 1975a). (a) Incident spherical wave. 
(b) Incident plane wave with ~ = 0. 
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Fig. 12. Integrated intensity along the exit surface of the crystal. 
Same defect as before, but simulation of the real experiment by 
addition of incident spherical waves. 
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Fig. 13. Densitometric measurement of the contrast of the defect 
simulated in this paper (due to Dr B. K. Tanner). 

IV. 1. Integration by addition of incident spherical waves 
The calculation of the contrast of a traverse tope- 

graph by addition of incident spherical waves cor- 
responds to a direct simulation of the real experiment: 
we have translated the point source along the entrance 
surface of the crystal as described in Fig. 2(b). The 
number of a spatial steps has been chosen in agreement 
with the network of integration of the Takagi-Taupin 
equations: it is equal to the horizontal step of this 
network TRANSV (Fig. 4). 

In order to obtain the integrated intensity along a 
length ab (Fig. 2b) equal to 150 #m, we have added 
300 different waves. The result (Fig. 12) is quite dif- 
ferent from the corresponding result obtained by addi- 
tion of incident plane waves (Fig. 8, curve 1). (1) The 
left peak of Fig. 8, curve 1 is decreased and its height 
is of the order of the mean intensity along the traverse 
topograph in Fig. 12. (2) The right peak is not at the 
same position in both figures with respect to the pro- 
jection of the defect on the exit surface of the crystal. 
We must also notice the presence of two important 
peaks on both wings of the curve of Fig. 12. 

We have compared both theoretical profiles with 
an experimental profile (Fig. 13). The large peak cor- 
responds to the image of the defect; the second, on 
the left, indicated by an arrow, is due to the noise of 
the plate. The profile calculated by addition of inci- 
dent spherical waves is more in agreement with ex- 
periment; the width of the main peak is larger in the 
experiment, but this may be explained by the width 
of the entrance slit of the X-rays, which is of the order 
of 100/zm. The two peaks on the wings will be ex- 
plained in the next section. 

We must conclude that the correlation between the 
experiment and the calculation is not very good. 

V. Fundamental difficulties in the simulation 
of traverse topographs 

In a perfect crystal the amplitude of the reflected waves 
at a given point P on the exit surface corresponds to 
the convolution of the repartition of light sources 
along the entrance surface of the crystal with the J0 
Bessel function (Balibar, 1969). This function oscillates 
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very rapidly along the limits of the integral PA and 
PB (Fig. 1). 

Takagi (1975b) has explained that the propagation 
of the wave fields will take place along the directions 
where the oscillations of the phase of the sources 
and of the Jo Bessel function are in greatest agree- 
ment. The greatest part of the intensity will thus come 
from the edges of the triangle PA and PB (Fig. 1) 
where the oscillations of J0 are more important 
(Fig. 5). 

Let us now suppose that the incident wave on the 
entrance surface AB of the crystal is a plane wave. 
The phase of this wave varies in agreement with (2). 
In the numerical integration of the Takagi-Taupin 
equations the error due to a distribution of sources 
along AB will then be more important when the oscilla- 
tions of J0 are noticeable, thus, the main error at point 
P on the exit surface will come from the values of the 
amplitude of the incident wave around A and B. In 
the simulation of the traverse topograph by addition 
of incident plane waves we will add the errors due to 
each plane wave, and the total error will be propor- 
tional to the number of added waves. 

Moreover, as has been explained in § III.2, numerical 
errors appear when we add plane waves with large 
departures from the Bragg angle. 

It was therefore possible to predict, before any cal- 
culation, that the integration of (3) would not be 
satisfactory and that the simulation of a traverse topo- 
graph by a sum of incident plane waves would give a 
poor result. This has been confirmed by our simulation 
and our results show that there is no hope of finding 
an approximate contrast by the addition of only a few 
plane waves, which was the only interest of such a 
method. 

Consider now the simulation of a traverse topo- 
graph by the addition of spherical incident waves. 
The distribution of sources is limited to one point on 
the entrance surface AB. The approximations of the 
integration will be noticeable only when the source 
lies in regions where the oscillations of Jo are notice- 
able, i.e. near A and B. The error in the value of the 
integrated intensity at point P would thus be impor- 
tant only for a small number of added waves, of the 
order of the error due to an integration performed with 
a single incident plane wave. It is another way of ex- 
plaining why a part of the direct image of the defect 
is missing. 

The two peaks on the wings of the curve in Fig. 12 
correspond to the limits of the traverse topograph. 
The simulation is not complete and some of the wave 
fields are missing; thus the image is wrong and the 
error due to the oscillations of the Bessel function is 
more important. A simple drawing shows that these 
parts correspond to a maximum number of approxima- 
tions. 

VI. Conclusion 

We have discussed all the approximations which are 

made in the numerical integration of the Takagi-  
Taupin equations. Two different types of errors ap- 
pear: some are due to the numerical method itself, 
others are due to the use of a computer. To decrease 
the order of these approximations means writing more 
sophisticated routines and also working with com- 
puters which possess a maximum word length. As up 
to now the simulation of a section topograph has re- 
quired a long computing time, it is not of practical 
interest to simulate section topographs with greater 
accuracy; we have shown that the actual precision of 
a simulation is good enough. In the case of a traverse 
topograph, it appears clearly that the solution is to 
simulate the real experiment, i.e. to add the reparti- 
tion of intensity due to incident spherical waves. 
The calculation by means of incident plane waves 
comes up against two difficulties: the choice of the 
limits of integration and the step size of this calcula- 
tion. We may conclude that the use of plane waves 
does not present any interest for the simulation of 
traverse topographs. 

To obtain a good simulation of a traverse topo- 
graph we must decrease the order of the approxima- 
tions. In the present work, a complete integration of 
the Takagi-Taupin equations through the whole 
crystal, was performed in 1-2 s, with incident spherical 
waves (on an IBM 370/168 computer); the total cal- 
culation of the intensity in the traverse topograph was 
made in about 6 min. To simulate a traverse topo- 
graph whose height is of the order of its width would 
mean 2 h of computer time! This means that the simu- 
lation of a traverse topograph with a greater accuracy 
than the present would take many hours. 

We may therefore conclude that the simulation of 
traverse topographs by the means of a computer has 
no actual practical interest. We must find a way 
other than an integration of the Takagi-Taupin 
equations along a network parallel to the edges of 
the Borrmann fan in order to simulate translation 
topographs. 

All the discussion of § § I I I  and V is based on dis- 
cussions and seminars held by Professor S. Takagi at 
the laboratory. I am very indebted to him for his 
kind attention. Thanks are due to Dr B. K. Tanner 
for providing experimental data and densitometric 
measurements. 
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Electrical measurements have been carried out on a 4N5 Cr single crystal in multi-Q and single-Q domains. 
It was found that the N6el temperature depends neither on the direction of current, nor on the existence 
of a magnetic field. In the multi-Q domains, the transverse magnetoresistance G changes according to 
G = AH". The magnetoresistance decreases with increasing temperature showing an anomaly at 40°C. 
For the single-Q domain specimen, measurements with H _1_ Q showed in the antiferromagnetic state the 
existence of saturation in the curve G = G(H). In the paramagnetic state, the transverse magnetoresistance 
is an increasing function of the magnetic field. Measurements with H IIQ showed that G increases ac- 
cording to G = AH", and this is ascribed to the existence of open orbits along the direction of polarization. 

Introduction 

Chromium is an antiferromagnetic material at room 
temperature, becoming paramagnetic at a somewhat 
higher temperature. The transition is known as the 
N6el point and has been found in the region between 
35 and 43"5°C (Corliss, Hastings & Weiss, 1959; 
Marcinkowski & Lipsit, 1961; Koumelis, 1973). 

Cr has kept the interest of many investigators be- 
cause of the anomalous properties near the N6el tem- 
perature, e.g. the specific heat, elastic constants, Debye 
temperature. Of special interest are the anomalies of 
the electrical properties. 

Marcinkowski & Lipsit (1961) measured the re- 
sistivity of polycrystalline Cr for various temperatures 
and found a minimum at 35+__2°C. Arajs & Dunmyre 
(1965) found this minimum at 40°C, while Sabine & 
Svenson (1968) found it at 37 °C. Muir & St6rm-Olsen 
(1971) measured the resistance of single-Q and multi-Q 
Cr versus temperature; all their curves showed a 
minimum at 39 °C, and a common linear part above 
it. Bastow & Street (1964) measured the temperature 
dependence of the magnetoresistance for an annealed 
specimen and found two linear parts that intersected 
at 38 °C. 

Arco, Marcus & Reed (1968) found at 4.2°K, that 
a single-QIl[100] specimen with the current per- 
pendicular to Q, showed a twofold symmetry of the 
magnetoresistance when the field was rotated around 
the direction of the current. For single-QIl[001] and 
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ilIQ, the magnetoresistance showed a fourfold sym- 
metry upon rotation of the field around the direction 
of current. 

In the present work, the resistance of multi-Q and 
single-Q Cr was measured versus temperature for a 
variety of directions of current and magnetic field. 

B 

Fig. 1. The heating chamber with the crystal and the electric contacts. 


